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A b s t r a c t  

We say that a graph G is homomorphic to a graph H if there is a mapping p 
from the vertices of G onto the vertices of H such that p(u) and p(o) are adjacent 
in H whenever u and o are adjacent in G. The homomorphism polynomial of a 
graph G is a polynomial in two variables that counts the number ofhomomorphisms 
of G onto the complete graph of each order. This polynomial can be computed 
recursively in an analog to the chromatic polynomial. In this paper, we present 
some results regarding the homomorphism polynomials of the graphs of chemical 
compounds - in particular, alkane isomers. The coefficients of the homomorphism 
polynomial can be used to predict the rankings of compounds with respect to 
several chemical properties. Our results seem to refine those obtained by Randi~ 
et al. from path lengths. 

A basic problem of theoretical chemistry is to classify chemical compounds 
with respect to their chemical or physical properties, and to use the classifications 
to predict the properties of  new compounds, the ultimate goal being to do this by 
computation rather than experimentation. Since the time of Cayley, it has been 
common to study chemical compounds in terms of graphs constructed with the 
atoms as vertices and the chemical bonds as edges. A natural application of  graph 
theory is to the study of  (constitutional) isomers, i.e. compounds with identical 
molecular formulae but differing constitution. Indeed, enumerating isomers was one 
of the first problems of  graph theory, and remains one of  its most common applica- 
tions in chemistry. 

More recently, there have been efforts to use graph-theoretic parameters to 
distinguish among isomers and to rank them in order of  various chemical and/or 
physical properties. Ideally, the parameter and the measured values of  the property 
for a few members of  the set would provide reasonably accurate extrapolations of  

© J.C. Baltzer AG, Scientific Publishing Company 



406 DAt. Berman, K. I4/. Holladay, Homomorphism polynomials 

the values for the entire set. Although the eigenvalues of  the adjacency matrix of  
the graph have been extensively used by chemists (see e.g. [1]), there have been 
numerous attempts to make use of  a wider variety of  graph properties [ 2 - 5 ]  in recent 
years. 

Randi6 and Wilkins (see [4] and its bibliography) have had some success in 
using the numbers of  paths of length p (the p-path numbers) of  the appropriate 
graphs to rank-order the thermodynamic and physical properties of  isomeric alkanes. 
Table 1 contains some of  their data. The 2-path numbers provide a coarse correlation: 

Table 1 

Comparison of path numbers and homomorphism polynomial for hexanes. The path numbers are 
the numbers of paths of length 2 and 3. The first homomorphism polynomial number is the co- 
efficient of x 5 y6. It is equal to the number of paths of length 2. The second homomorphism 
polynomial number is the coefficient of x* y3. Qa is the heat of atomization, bp is the boiling 
point. Qo is the heat of vaporization. Source: ref. [4]. 

Path numbers Hom. poly. 
Hexane 2 3 1 2 Qa bp Qo 

2,2-MM 7 3 7 13 1801.49 49.7 6.651 
2,3-MM 6 4 6 11 1799.63 57.9 6.985 

2-M 5 3 5 10 1798.80 60.2 7.160 
3-M 5 4 5 9 1798.16 63.5 7.255 
n 4 3 4 8 1797.10 68.7 7.555 

for different 2-path numbers in an isomer set, there is a parallel change in the proper- 
ties of  the isomers. However, there are a number of  cases where two or more isomers 
from the same set have the same 2-path numbers. Some improvement is obtained by 
considering as well the 3-path numbers, but  this does not remove all of  the ambiguities. 
Moreover, there are some properties that increase with the 2-path number but  decrease 
with the 3-path number. 

We propose to use, instead, the homomorphism polynomial, introduced by 
Bari [6].  We say that a graph G is homomorphic to a graph H if there is a mapping p 
from the vertices of  G onto the vertices of  H such that p(u) and p(o) are adjacent 
in H whenever u and o are adjacentin G. (This differs from G and H being isomorphic, 
in that p(u) and p(o) may be adjacent in H w h e n  u and o are not adjacent in G.) In a 
sense, homomorphism is a generalization of  coloring, in that an n-coloring of  G can 
be seen as a homomorphism from G to the complete graph on n vertices. A homo- 
morphism also may be seen as a generalized "folding" of  G onto H [7].  It may be 
this aspect that explains the relevance to chemical properties. 

The homomorphism polynomial of  a graph G is a polynomial in two variables 
that counts the number of  homomorphisms of  G onto the complete graph of  each 
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order. This polynomial can be computed recursively in an exact analogy to the 
chromatic polynomial. (For other variations, see [8] .) The chromatic polynomial 
can in fact be derived from the homomorphism polynomial: the formula will be 
given in the proof of theorem 2. Since this derivation is in polynomial time, we see 
that the basic problem of computing the full homomorphism polynomial for a general 
graph is of NP-complete difficulty. Our results indicate that non-isomorphic graphs 
may nonetheless be detected from a small part of the homomorphism poylnomial, 
which can be computed rather quickly. 

To compute the homomorphism polynomial of G, let u and v be any two 
non-adjacent vertices. We construct from G the two new graphs: G * u v ,  in which u 
and o are replaced by a new vertex o' which is adjacent to each vertex adjacent in G 
to u or v; and G + uv ,  in which a "pseudo-edge" is added,joining u to v. (We will 
denote these new graphs as G* and G ÷ when there is no ambiguity.) This process 

tP 

is iterated until G is reduced to graphs each of which is a "pseudo Kp , a p vertex 
graph in which each pair of vertices is joined by an edge or a pseudo-edge. See fig. l(c) 
for an example of this process. 

The homomorphism polynomial can then be read from this decomposition: 
having a te rm xPy q for each resulting pseudo Kp having exactly q pseudo-edges. 
Note that a graph with n vertices and e edges will have only a single x n term with 
a coefficient of 1 and with y an exponent of C ( n ,  2) - e (where C(n,  k )  denotes the 
binomial coefficient). This is because the only pseudo K n is obtained by the addition 
of a pseudo-edge between each pair of non-adjacent vertices. In particular, for trees 
the first term will always be x n y  C(n - 1,2) 

We will conventionally write the homomorphism polynomial in decreasing 
order, first of x exponents and then of y exponents. The first non-trivial term is thus 
the leading x n -1 term. We will rank homomorphism polynomials first by the co- 
efficient of this term. We will show in theorem 1 that for trees this coefficient will 
equal the 2-path number, so that for this class of graphs representing acyclic chemical 
compounds, we obtain the same first-order rankings as in [3]. 

In this paper, we consider properties of alkanes, i.e. acyclic compounds com- 
posed entirely of carbon and hydrogen with single bonds. We follow the usual practice 
[4] of representing alkanes by their carbon backbone (see figs. l(a) and l(b) for an 
example). Thus, the graph model of an n carbon alkane is a tree with n vertices and 
maximum degree 4. 

Table 1 gives a comparison of path numbers and the homomorphism poly- 
nomials of  hexanes. Notice that the ranking given by the homomorphism polynomial 
agrees with the orders of  the values of the three given properties. 

THEOREM 1 

Let G be an n vertex tree. The coefficient of the x n - 1 term having the largest 
y exponent gives the number of  2-paths in G. 
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Fig. 1. (a) The complete structure graph of n butane. 
(b) The graph of the carbon backbone of this mole- 
cule. (c) The computation of the homomorphism 
polynomial for n butane. 
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/'roof 
From the definition of  the homomorphism polynomial we obtain an x n - 1  

term for each pseudo K n _ ~ in the final reduction of G. We will obtain one such 
from the contraction of  each pair u,  v of non-adjacent vertices; the other steps in its 
construction will all be additions of  pseudo-edges to the graph G * u v .  T h e  number of  
pseudo-edges added gives the exponent of  y. We will deduce this number by counting 
the number of  actual edges in G*. 

Consider the new vertex u r obtained by contracting u and v. Let w be any 
other vertex; recall that w is adjacent to u t in G* if it is adjacent to u or v in G. 
Therefore, its degree in G* will either be the same as its degree in G or will be one 
less. The latter will happen if it is adjacent to both u and v, i.e. if u, w, v is a 2-path. 
Note that there can be only one such w, as G is a tree. Likewise, the degree of u ' will 
either be equal to the sum of the degrees in G of u and v, or else one less if there is a 
2-path. 

Therefore, the number of  actual edges in G * u v  is either one less than or equal 
to the number in G, depending on whether or not there is a 2-path from u to v, and 
hence there will be only two x n - ~  terms and the coefficient of the one with the 
larger y exponent will be the number of  2-paths. It is easily computed that the sum of 
the coefficients of  the two x n -  ~ terms can be expressed as the binomial coefficient 
C ( n  - 1, 2). The possible values of  the y exponent will be C ( n  - 1, 2 ) -  (n - 1) and 
C ( n - 1 , 2 ) -  ( n - 2 ) .  

We know of  no such simple characterization of  the other terms of  the homo- 
morphism polynomial, but the proof of theorem 1 gives an indication that the co- 
efficient of the leading x n - 2  term will also give in some sense a measure of  the 
"compactness" of  the structure of  the tree. This is therefore the next term we con- 
sider. This term can discriminate between pairs of  graphs with the same 3-path numbers, 
and we will present data indicating that this ranking of  the homomorphism poly- 
nomials agrees with the observed values of several chemical properties (see fig. 1). 
Note that we do not use the coefficient of  the second x n - 1 term because it conveys 
no new information. It is just C ( n  - 1 , 2 )  minus the coefficient of the leading x n - 

term. 
More generally, in a tree the coefficients of  the terms with a given exponent p 

for x will always add up to a constant depending only on p. 

THEOREM 2 

In the homomorphism polynomial of  T o, a tree with o vertices, the sum of the 
coefficients of  all the terms with x exponent n is equal to the Stifling number of  the 
second kind S ( o  - 1, n - 1). 
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proof 

Define a linear transformation L on the real vector space of polynomials by 
sending the basis elements x n to [X]n, the falling factorials of  degree n. (The falling 
factorial is defined by [X]n = x (x  - 1) . . .  (x - n  + 1).) By theorem 2 ( 0  in Bari [6], 
the chromatic polynomial P(G; x) of  a graph can be obtained from the homo- 
morphism polynomial h (G; x, y)  by the formula 

P(G; x) = L(h(G; x, 1)). (1) 

The coefficient of  x n in h(Tu; x, 1) is obtained by summing the coefficients of  all 
the terms of h (T v; x, y) with x exponent n. Let us write this as 

h(L;x ,  1) = y c,,x'. (2) 

It is well known ([9] ,  p. 128) that the chromatic polynomial of  T v is 

P( Tv; x) = x ( x  - 1) v - '  (3) 

Substituting (3) into the LHS o f ( l )  and (2) into the RHS, we get 

x ( x - 1 )  v-1 = ZCn[X]n. 

Dividing by x and using the fact that [X]n/X = [x - 1 ]n - 1, we obtain 

( x - l )  u-1 = ~_cn[x -1]n_ l  

This is immediately recognizable as an identity for the Stirling numbers of the second 
kind, evaluated at x - 1 (see [10], p. 41). That identity shows that c n is the Stirling 
number S ( v - 1 ,  n - 1 ) .  

Once ranldngs are obtained, a natural question arises concerning the extent to 
which the qualitative results can be extended to quantitative predictions about the 
ranked properties. We have preliminary results using linear regression that show good 
correlations between homomorphism polynomial coefficients and physical constants 
such as heat of  atomization and heat of  formation. Figure 2 and table 2 show the 
results for the hexanes, a case where the value of 13 for 2,2-MM gives a good linear 
fit to the data. Here, the plausible value of 12 would give a correct ranking but not 
as good a fit. When interpreting the regression results in table 2, it should be 
remembered that the homomorphism polynomial coefficients are giving counts of 
certain objects and hence must be small integers. The results shown are about as good 
as small integers can give. This same discretization effect also appears in fig. 3, which 
gives the results for heptanes. The regression results for heptanes in table 3 are reason- 
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Fig. 2. Graph of heat of atomization for the hexanes versus the 
coefficient of the X 4 ys  term of the homomorphism polynomial 
of the structure graph of the hexane. See table 2 for the actual 
numbers. 

Table 2 

Regression results for hexanes and heat of atomization 

Hom. poly. Least squares 
Hexane coefficient Qa predicted Residual 

2,2-MM 13 1801.49 1801.440 0.051 
2, 3-MM 11 1799.63 1799.723 - 0.093 

2-M 10 1798.80 1798.864 - 0.064 
3 -M 9 1798.16 1798.006 0.154 
n 8 1797.10 1797.148 - 0.048 
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Fig. 3. Graph of heat of vaporization for the heptanes versus the 
coefficient of the X s y6 term of the homomorphism polynomial 
for the heptane. See table 3 for the actual numbers. 

Table 3 

Regression results for heptanes and heat of vaporization. The values for heat of 
vaporization are from [4]. The homomorphism polynomial coefficient 1 is the co- 
efficient of X s y6 and the coefficient 2 is the coefficient of X 5 y5 

Hom. poly. Least squares 
Heptane 1 2 Qo predicted Residual 

n 13 36 8.739 8.6404 0.0986 
2-M 16 37 8.325 8.3487 - 0.0237 
3-M 16 35 8.391 8.4030 - 0.0120 
3-E 16 33 8.421 8.4573 - 0.0363 

2,4-MM 21 34 7.872 7.9892 - 0.1172 
2,3-MM 19 34 8.191 8.1656 0.0254 
2,2-MM 23 36 7.764 7.7585 0.0055 
3,3-MM 21 36 7.901 7.9349 - 0.0339 

2,2,3-MMM 26 33 7.669 7.5754 0.0936 
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6 8 5 4 • 3 7 ?  y2 6x 3 x y ~ 2x 5 y ~ 4x 5 y • 2x 5 y • • 8x ¢ y ÷ 

Fig. 4. The above two non-isomorphic graphs have the same 
homomorphism polynomial. The common homomorphism poly- 
nomial is displayed below the graphs. This example was found by 
M. Albertson. 

able and provide further evidence that quantitative results are within the reach of our 
methods. Once we have more data, we will examine the regression coefficients them- 
selves to see if they can be predicted. 

It is well known [11] that there exist families of non-isomorphic graphs 
having the same eigenvalues. Slater [12] has disproved Randid's conjecture that non- 
isomorphic trees must be distinguishable by their numbers of paths of each length. 
We have an example due to Albertson of non-isomorphic graphs with identical homo- 
morphism polynomials (fig. 4). Girse [13] has asked whether the homomorphism 
polynomial can always distinguish trees. Even if it can not distinguish all trees, it 
would be important to know whether it can distinguish all graphs in the chemically 
important class of  trees with maximum degree 4. 
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